

THE SILENT FALLOUT

LOOMING SHADOWS OF A
SOUTH ASIAN NUCLEAR CRISIS

May, 2025

The Silent Fallout

Looming Shadows of a South Asian Nuclear Crisis

Tonmay Saha¹

As tensions flare once again between India and Pakistan, with missiles flying across borders and accusations mounting over deadly attacks in Kashmir, a familiar dread resurfaces: the specter of nuclear war in South Asia. For many, the frontline appears confined to the Line of Control or the skies above contested valleys. But for Bangladesh—a densely populated delta nation with no nuclear weapons but a deep vulnerability to fallout—the danger is far less visible and potentially far more devastating.

The global nuclear arms race, reignited in the post-Cold War era, has entered a new and dangerous phase marked by modernization, miniaturization, and regionalization of deterrent postures. As of 2024, the world's nine nuclear-armed states collectively possess over 12,500 nuclear warheads, with the United States and Russia accounting for more than 85% of the total. However, the most volatile growth is occurring in South Asia, where India and Pakistan maintain approximately 172 and 170 warheads, respectively. Both nations continue to expand their nuclear delivery systems—India developing longer-range ballistic missiles like Agni-V and sea-based assets, while Pakistan invests heavily in tactical nuclear weapons such as the NASR to counter India's conventional superiority. These developments are driven by a regional arms competition deeply tied to unresolved geopolitical conflicts, especially over Kashmir. Financially, global nuclear weapons-related spending reached nearly \$83 billion in 2023, with India allocating around \$2.7 billion and Pakistan approximately \$1 billion annually to nuclear forces, according to ICAN. These investments come at the expense of social spending in highly populous, climate-vulnerable countries. In a densely interdependent region like South Asia, the continuation of this nuclear build-up risks not just strategic instability, but also devastating humanitarian and environmental fallout from even a limited nuclear exchange.

India and Pakistan have had a volatile relationship since their 1947 partition, marked by four wars and numerous skirmishes. India's nuclear program began in the 1950s under the guise of peaceful development, culminating in its first nuclear test in 1974 (Smiling Buddha) and a series of thermonuclear-capable tests in 1998. Pakistan responded within weeks in 1998 with its own nuclear detonations, catalyzed by its conventional defeat in the 1971 war and fears of strategic imbalance. Today, both nations possess around 170–175 nuclear warheads each, with Pakistan deploying tactical delivery systems like the NASR (Hatk-9), designed for battlefield use. India maintains a declared no-first-use doctrine but has recently introduced doctrinal ambiguities. Both regimes have put nuclear arsenals ahead of human development in spite of pervasive poverty, environmental damage, and underfunding of health and education. This raises the crucial question of whether deterrence has come at the expense of the very lives it claims to safeguard. The need to protect biodiversity, human well-being, and the delicate ecosystems that support both has all too frequently been overshadowed by the fixation with strategic domination.

¹ Research Associate, Change Initiative; Email: tonmay@changei.org

To understand the scale of this risk, let us examine a scenario grounded in nuclear engineering fundamentals. Suppose a 15-kiloton fission airburst occurs over Delhi—a plausible target in the context of conflict escalation—during the Southwest monsoon. Using Gaussian plume modeling from Lamarche's nuclear engineering framework, and factoring prevailing winds, rainfall, and topography, fallout would be swept northeast across the Indo-Gangetic Plain, reaching Bangladesh within hours.

The particulate radionuclides—Iodine-131, Cesium-137, and Strontium-90—would be scavenged from the plume by heavy monsoon rains and deposited across northern and northeastern Bangladesh. Estimated ground deposition for Cesium-137 could reach up to 10^4 Bq/m² in parts of Sylhet and Rangpur, levels comparable to the lower contamination zones around Chernobyl. Iodine-131, with its 8-day half-life, poses acute thyroid cancer risks, particularly to children consuming local milk or vegetables. Strontium-90, a bone-seeking isotope, would increase long-term leukemia and skeletal cancer risks.

But fallout doesn't stay put. Bangladesh's military posture, by contrast, is historically neutral, rooted in a "friendship to all, malice towards none" doctrine. It has no nuclear arsenal and is a firm adherent to the Non-Proliferation Treaty (NPT), the Comprehensive Test-Ban Treaty (CTBT), and the Treaty on the Prohibition of Nuclear Weapons (TPNW). Yet geography places Bangladesh perilously close to two volatile nuclear-armed neighbors. A single misfire or miscalculation could bring radioactive rain upon its farmlands and rivers, contaminating life itself.

Bangladesh's rivers—the Ganges (Padma), Brahmaputra (Jamuna), and Meghna—form the world's second-largest river system. Rain would wash radionuclides into this vast floodplain, transporting them hundreds of kilometers downstream. Advection-diffusion modeling shows Cs-137 concentrations of 0.5 to 4 Bq/m³ during peak flood discharge. Using river flow data (e.g., 1×10^4 m³/s), this implies a potential transfer of 10^{11} Bq of radioactive material into downstream ecosystems. These radionuclides would infiltrate drinking water, irrigate rice paddies, and enter aquatic food chains, exposing millions to chronic low-dose radiation.

Long-term health effects, based on UNSCEAR and NEA data, suggest that a deposition of 10 kBq/m² of Cs-137 results in a cumulative dose of 0.5–0.9 mSv over decades. While seemingly small for an individual, this dose multiplied across millions of people still implies thousands of potential cancer cases. For example, a contaminated zone covering 50,000 km² with an average dose of 0.5 mSv/year over 30 years could result in more than 10,000 excess cancer cases based on ICRP risk coefficients. Children are especially vulnerable, and rural populations with poor access to clean water or diversified diets would face the brunt.

The ecological impact would be severe. The Sundarbans mangrove forest, already stressed by salinity and sea level rise, could face radioactive contamination of its aquatic food chains. Biodiversity collapse, fisheries decline, and long-term soil toxicity would follow, with effects cascading throughout the Bay of Bengal. Wildlife such as Bengal tigers, deer, and rare migratory birds would suffer bioaccumulation effects, potentially decimating populations.

Diplomatically, Bangladesh would invoke the international legal principle of transboundary harm, demanding accountability at the United Nations and the International Court of Justice. Yet in a world dominated by nuclear powers, political leverage often outweighs moral argument. Compensation may prove elusive. This would deepen Dhaka's commitment to

global disarmament treaties and bolster its calls for a South Asian Nuclear Weapon-Free Zone—an idea long dismissed by its more powerful neighbors.

Strategically, such a catastrophe might lead Bangladesh to develop new alliances or early-warning systems, even without entering a nuclear club. Enhanced cooperation with IAEA, regional radiation-monitoring networks, or even bilateral agreements with India and China on emergency response could emerge as policy imperatives.

To make matters worse, even not holding nuclear weapons has become a matter of grave concern. Bangladesh, like many small nations, stands unarmed in a world increasingly defined by nuclear power. As a signatory to the Non-Proliferation Treaty (NPT), we have chosen the path of peace and responsibility. But that very commitment leaves us exposed. Encircled by nuclear-armed neighbors—India, Pakistan, Iran, and a militarizing Myanmar—Bangladesh finds its voice often drowned out in regional power dynamics. This asymmetry undermines our position on critical issues like river rights, maritime boundaries, and border security. The mere possession of nuclear weapons by our neighbors skews negotiations, rendering our appeals easier to ignore.

This is not just Bangladesh's burden—it is the collective plight of non-nuclear states across the Global South. Their principled restraint has become a strategic vulnerability. Therefore, it is imperative that Bangladesh—and countries like it—cultivate an alternative form of strategic deterrence. Not through nuclear arms, but through innovative, non-lethal "biting power" that demands respect. This could include world-class cyber defense, economic leverage through green energy exports, diplomatic coalitions, or disruptive asymmetrical capabilities that shift the calculus of coercion.

Only when small nations can assert credible influence will global powers be compelled to include binding protections of their sovereign and natural rights in every treaty, every deal, and every geopolitical engagement. The age of passive neutrality must give way to active, strategic resilience.

In the end, Bangladesh's as well as other South Asian Nations' plight illustrates the great injustice of the nuclear age: those who do not possess the bomb may yet suffer its consequences. It is a sobering reminder that in the event of a South Asian nuclear exchange, the blast would not be the only tragedy. The fallout—slow, silent, and salient—would poison the delta for generations.

And it would not respect borders.

CHANGE INITIATIVE

House: B157, Road: 22, New DOHS, Mohakhali, Dhaka 1206, Bangladesh

Phone: +88-0130-284-3523 | Email: info@changei.org

